Original Russian Text Copyright © 2002 by Shurdumov, Trunin, Kuchukova.

Thermal Analysis of the System Li₂WO₄-Li₄P₂O₇-WO₃

B. K. Shurdumov, A. S. Trunin, and M. A. Kuchukova

Kabardino-Balkarian State University, Nalchik, Kabardino-Balkaria, Russia Samara State Technical University, Samara, Russia

Received June 26, 2000

Abstract—The system $\text{Li}_2\text{WO}_4\text{-Li}_4\text{P}_2\text{O}_7\text{-WO}_3$ in the range of WO₃ contents of up to 60 mol % was studied by thermal analysis. In the examined range of the composition triangle, the crystallization fields of lithium tungstate and pyrophosphate, of congruently melting compound D ($\text{Li}_2\text{WO}_4 \cdot \text{WO}_3$), and of incongruently melting compound D_2 ($2\text{Li}_2\text{WO}_4 \cdot \text{Li}_4\text{P}_2\text{O}_7$) were revealed, and the glass formation region was established. Low-melting compositions showing promise for synthesis of lithium-tungsten oxide bronzes were revealed.

One of procedures for preparing powders of tungsten oxide bronzes, exhibiting high catalytic activity, is electrolysis of melts of systems based on alkali metal polytungstates and phosphates [1].

In this work, we performed thermal analysis of the system $\text{Li}_2\text{WO}_4\text{-}\text{Li}_4\text{P}_2\text{O}_7\text{-}\text{WO}_3$ with the aim to elucidate how the components interact in a heterogeneous medium and to reveal low-melting compositions with favorable composition and physicochemical properties for preparing lithium–tungsten oxide bronzes. The system was studied at the WO_3 content of up to 60 mol %, because, at a higher content of WO_3 , glasses are formed, and such compositions are unsuitable for preparing bronzes.

Binary systems. The system $\text{Li}_2\text{WO}_4\text{-WO}_3$ was studied in numerous works; we took data for this system from [2]. According to these data, the components form lithium ditungstate D ($\text{Li}_2\text{W}_2\text{O}_7$, mp 745°C) and incongruently melting lithium tetratungstate D_1 ($\text{Li}_2\text{W}_4\text{O}_{13}$), with the peritectic point P_1 (67 mol % WO_3 , 800°C).

The characteristics of the nonvariant points of this system are listed in Table 1.

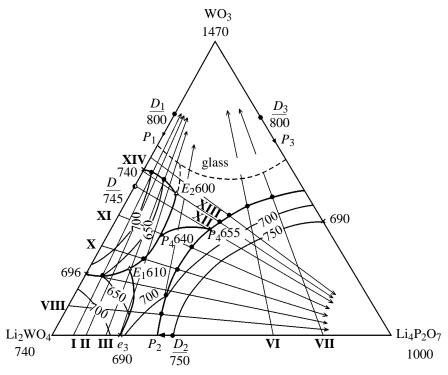
The system $\text{Li}_4\text{P}_2\text{O}_7\text{-WO}_3$ has not been studied previously. We found that the components form an eutectic (50% WO₃, mp 690°C) and an incongruently melting compound D_3 (Li₄P₂O₇·3WO₃, peritectic point P_3 at 68 mol % WO₃, 800°C).

X-ray phase analysis of the new phase D_3 showed that it cannot be considered as a simple adduct; formation of this compound involves anion rearrangement and can be described by Eq. (1):

$$\text{Li}_4\text{P}_2\text{O}_7 + 5\text{WO}_3 \rightleftharpoons \text{Li}_2\text{O} \cdot \text{P}_2\text{O}_5 \cdot 3\text{WO}_3 + \text{Li}_2\text{W}_2\text{O}_7.$$
 (1)

It should be noted that the system Li₄P₂O₇–WO₃ behaves in this case similarly to the related systems with sodium and potassium pyrophosphates. The mechanism of the occurring process can be explained in more detail in terms of acid–base equilibria in melts. Under the action of WO₃, phosphates can transform into more acidic species, and WO₃, into more basic species, which can be expressed in our case as follows:

$$\text{Li}_4\text{P}_2\text{O}_7 + \text{WO}_3 \longrightarrow 2\text{LiPO}_3 + \text{Li}_2\text{WO}_4.$$
 (2)


Lithium metaphosphate and tungstate formed by reaction (2) subsequently combine with WO_3 to form the product of reaction (1).

The system $\text{Li}_2\text{WO}_4\text{-Li}_4\text{P}_2\text{O}_7$ was not studied previously either. We found that its components form an eutectic (e_3) containing 20 mol % $\text{Li}_4\text{P}_2\text{O}_7$ (mp 690°C) and an incongruently melting compound D_2 (2Li₂WO₄·Li₄P₂O₇, peritectic point P_2 at 30 mol % $\text{Li}_4\text{P}_2\text{O}_7$, 750°C).

Ternary system. To plot the liquidus surface of the system Li₂WO₄-Li₄P₂O₇-WO₃, we studied 14 internal sections and, in the examined concentration

Table 1. Characteristics of nonvariant points of the system Li₂WO₄–WO₃

Designa-	WO ₃ content,	mp,	Point type	
tion	mol %	°C		
$E_1 \\ E_2 \\ P_1 \\ D$	20 55 65 50	696 740 800 745	Eutectic " Peritectic Distectic	

Melting diagram of the system $\text{Li}_2\text{WO}_4\text{-Li}_4\text{P}_2\text{O}_7\text{-WO}_3$ (temperatures in °C).

Table 2. Characteristics of nonvariant points of the system Li₂WO₄–Li₄P₂O₇–WO₃

Desig- nation	Tempe-	Compo	Doint tymo		
	rature, °C	Li ₂ WO ₄	WO ₃	Li ₄ P ₂ O ₇	Point type
E_1	610	65	22	11	Eutectic
E_2	620	40	48	12	"
P_4	655	34	36	30	Transition
P_5	640	50	35	15	"

region of the composition triangle, revealed the crystallization fields of lithium tungstate and pyrophos-

phate, of congruently melting compound D (lithium ditungstate $\text{Li}_2\text{W}_2\text{O}_7$), and of incongruently melting compound D_2 ($2\text{Li}_2\text{WO}_4\cdot \text{Li}_4\text{P}_2\text{O}_7$); also, we revealed the glass formation region (see figure).

The characteristics of the nonvariant points and interception points of the internal sections are listed in Tables 2 and 3.

Our results show that the structure of the melting diagram of the system Li₂WO₄–Li₄P₂O₇–WO₃ is predetermined by interaction of the components in the binary subsystems, and the compositions adjacent to the Li₂WO₄–WO₃ side, mp 650–700°C, show promise for development of an electrochemical procedure for preparing powders of lithium–tungsten oxide bronzes.

Table 3. Characteristics of interception points of the internal sections of the system Li₂WO₄-Li₄P₂O₇-WO₃

Section no.	Initial composition, mol %	Component added, mol %	Tempe- rature, °C	Section no.	Initial composition, mol %	Component added, mol %	Tempe- rature, °C
I	95% Li ₂ WO ₄ +	20 WO ₃	650	IV	80% Li ₂ WO ₄ +	32 WO ₃	630
	$5\% \text{ Li}_4 \bar{P}_2 O_7$	55 WO_3	700		$20\% \text{ Li}_{4}\text{P}_{2}\text{O}_{7}$	55 WO_3	670
II	90% Li ₂ WO ₄ +	22 WO_3	630	V	$70\% \text{ Li}_{2} \text{WO}_{4} +$	37 WO_3	650
	$10\% \text{ Li}_{4}\text{P}_{2}\text{O}_{7}$	55 WO_3	674		$30\% \text{ Li}_{4}\text{P}_{2}\text{O}_{7}$	50 WO_3	660
III	85% Li_2WO_4 +	23 WO_3	610	VI	65% Li ₂ WO ₄ +	44 WO_3	675
	15% Li ₄ P ₂ O ₇	51 WO ₃	650		35% Li ₄ P ₂ O ₇		l

Table 3. (Contd.)

Section no.	Initial composition, mol %	Component added, mol %	Tempe- rature, °C	Section no.	Initial composition, mol %	Component added, mol %	Tempe- rature, °C
VII	20% Li ₂ WO ₄ +	40 WO ₃	680	XI	60% Li ₂ WO ₄ +	15Li ₄ P ₂ O ₇	640
	80% $Li_4P_2O_7$				40% WO ₃	$38\text{Li}_4\text{P}_2\text{O}_7$	660
VIII	90% Li ₂ WO ₄ +	$20 \text{Li}_4 \text{P}_2 \text{O}_7$	670	XII	50% Li ₂ WO ₄ +	$14\text{Li}_4\text{P}_2\text{O}_7$	660
	10% WO ₃	$30 \text{ Li}_4\text{P}_2\text{O}_7$	700		50% WO ₃	$30\text{Li}_4\text{P}_2\text{O}_7$	655
IX	80% Li ₂ WO ₄ +	$5Li_4P_2O_7$	650	XIII	45% Li ₂ WO ₂ +	$13\text{Li}_4\text{P}_2\text{O}_7$	620
	20% WO ₃	$15\text{Li}_4\text{P}_2\text{O}_7$	645		$55\% \text{ WO}_3$	$30\text{Li}_4\text{P}_2\text{O}_7$	660
	3	$38\text{Li}_4\text{P}_2\text{O}_7$	700		J	. 2 ,	
X	70% Li ₂ WO ₄ +	$12\text{Li}_{4}\text{P}_{2}^{2}\text{O}_{7}$	620	XIV	40% Li ₂ WO ₄ +	$15\text{Li}_4\text{P}_2\text{O}_7$	660
	$30\% \text{ WO}_3$	$20\text{Li}_4\text{P}_2\text{O}_7$	670		$60\% \text{ WO}_3$	$32\text{Li}_{4}^{3}\text{P}_{2}^{2}\text{O}_{7}^{7}$	655
	3	$38\text{Li}_4^4\text{P}_2^2\text{O}_7^7$	750		3	7 2 1	

REFERENCES

- 1. Shurdumov, B.K., Shurdumov, G.K., Kuchukova, M.A., and Temirkanova, L.Kh., USSR Inventor's Certificate no. 1536863, 1989, *Byull. Izobret.*, 1989, no. 5.
- 2. Mokhosoev, M.V., Alekseev, F.P., and Lutsyk, V.I., Diagrammy sostoyaniya molibdatnykh i vol'framatnykh
- sistem (Phase Diagrams of Molybdate and Tungstate Systems), Novosibirsk: Nauka, 1978, p. 56.
- 3. Posypaiko, V.I., Alekseeva, E.A., and Vasina, N.A., *Diagrammy plavkosti solevykh sistem: Spravochnik* (Melting Diagrams of Salt Systems: Handbook), Moscow: Metallurgiya, 1979, part 3, pp. 101, 111, 115, 121.